Some remarks on factorization in algebraic number fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Number Theory

This note contains some disconnected minor remarks on number theory . 1 . Let (1) Iz j I=1, 1<j<co be an infinite sequence of numbers on the unit circle . Put n s(k, n) _ z~, Ak = Jim sup I s(k, n) j=1 k=oo and denote by B k the upper bound of the numbers I s(k,n)j . If z j = e 2nij' a =A 0 then all the Ak 's are finite and if the continued fraction development of a has bounded denominators the...

متن کامل

Algebraic number fields

By an algebraic number field we mean a subfield of the algebraic numbers, or an isomorphic copy of such a field. Here we consider questions related to the complexity of determining isomorphism between algebraic number fields. We characterize the algebraic number fields with computable copies. For computable algebraic number fields, we give the complexity of the index sets. We show that the isom...

متن کامل

Normal Algebraic Number Fields.

Introduction. In this paper we present a detailed account of the results recently published in the Proceedings of the National Academy of Sciences [29 Our theory is an attempt to generalize the results of the classical class field theory to arbitrary normal fields. In the last analysis, the theory of cyclic extensions Z of an algebraic number field k can be described in terms of cyclic algebras...

متن کامل

Some Remarks on Nil Groups in Algebraic K-theory

This note explains consequences of recent work of Frank Quinn for computations of Nil groups in algebraic K-theory, in particular the Nil groups occurring in the K-theory of polynomial rings, Laurent polynomial rings, and the group ring of the infinite dihedral group. 1. Statement of Results Let R be a ring with unit. For an integer q, let KqR be the algebraic K-group of Bass and Quillen. Bass ...

متن کامل

Isomorphisms of Algebraic Number Fields

Let Q(α) and Q(β) be algebraic number fields. We describe a new method to find (if they exist) all isomorphisms, Q(β) → Q(α). The algorithm is particularly efficient if there is only one isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1983

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-43-1-53-68